Properties of RecA-oligonucleotide complexes.

نویسندگان

  • T Simonson
  • M Kubista
  • R Sjöback
  • H Ryberg
  • M Takahashi
چکیده

The interaction of RecA protein with short single-stranded oligonucleotides is characterised by flow linear dichroism (LD), isoelectric focusing (IEF) and electron microscopy (EM). From LD and EM it is evident that RecA forms long filaments with at least some 50 oligonucleotides in a 'train formation'. The tendency to form trains is substantially lower when an amino group is attached to the 5' end of the oligonucleotide, suggesting that the modification impairs protein-protein interactions at the interface between two oligomers. From LD it is also evident that no bridging occurs between RecA-oligonucleotide complexes containing more than one oligomer strand per RecA filament. This property make them manageable in polyacrylamide gels, hence allowing characterisation by IEF. RecA was found acidic with a pI of 5.0. The pI was not dependent on the presence of bound cofactor (ATP gamma S) and oligonucleotides suggesting that protonation of the protein readily occurs to compensate for the negative charges provided by bound cofactor and DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Affinity chromatography of RecA protein and RecA nucleoprotein complexes on RecA protein-agarose columns.

We have analyzed the nature of RecA protein-RecA protein interactions using an affinity column prepared by coupling RecA protein to an agarose support. When radiolabeled soluble proteins from Escherichia coli are applied to this column, only the labeled RecA protein from the extract was selectively retained and bound tightly to the affinity column. Efficient binding of purified 35S-labeled RecA...

متن کامل

The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA.

A key step in homologous recombination is the alignment and pairing of homologous DNAs. The Escherichia coli RecA protein initiates pairing by binding to single-strand DNA, forming a helical nucleoprotein filament. We demonstrate that in the presence of the nonhydrolyzable ATP analogue adenosine 5'-[gamma-thio]triphosphate and ADP, RecA can pair a homologous oligonucleotide 15 bases long with a...

متن کامل

Continuous association of Escherichia coli single-stranded DNA binding protein with stable complexes of recA protein and single-stranded DNA.

The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuo...

متن کامل

The search for DNA homology does not limit stable homologous pairing promoted by RecA protein

BACKGROUND The basic molecular mechanisms that govern the search for DNA homology and subsequent homologous pairing during genetic recombination are not understood. RecA is the central homologous recombination protein of Escherichia coli; because several RecA homologues have been identified in eukaryotic cells, it is likely that the mechanisms employed by RecA are conserved throughout evolution...

متن کامل

"Activated"-RecA protein affinity chromatography of LexA repressor and other SOS-regulated proteins.

We have developed an affinity column to study the interaction of LexA repressor and other substrates with the activated form of RecA protein. Nucleoprotein complexes of RecA protein, (dT)25-30, and adenosine 5'-[gamma-S]thio-triphosphate were formed in solution and bound to RecA protein-agarose columns. These "activated"-RecA nucleoprotein complexes were retained by strong hydrophobic interacti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular recognition : JMR

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 1994